

A High Level Public-Key Based Cryptographic Services API

Introduction

This document specifies a high-level Application Programming Interface (API) in the C language
for public-key based cryptographic services. Currently, PKI-enabled applications must use
proprietary, vendor-provided APIs to interface with their PKI, thus making support across
multiple PKI products difficult. To facilitate the development and wide-deployment of PKI-
enabled applications, NIST is working with several federal agencies to make this interface to a
PKI consistent, regardless of the PKI product being used. If each PKI product and each
application can meet at a common interface, more applications will become PKI enabled for all
PKIs. Figure 1 illustrates the components of a PKI-enabled application and the specific interface
that this document attempts to address.

Figure 1. High-Level PKI Services API

The application requiring security services is any application that needs digital signature and/or
encryption services. The security services/vendor products are the existing vendor products that
provide the signing and encryption functionality. The product API is the vendor-specific
interface provided by the product for calling the signing and encryption services. The high-level
PKI services API is the common API that this document specifies to provide a consistent
interface to signing and encryption services irrespective of the product being used. The high-level
API is designed to hide the complexity of the underlying security mechanisms but facilitate
service requests through simple service calls. The glue layer is the code necessary to translate the
high-level PKI services API into a product-specific API.

In this specification, the term "PKI" is loosely used to refer to all the components below the high-
level PKI Services API. The API is specified in the C language.

Overview

The high-level PKI services API defines five functions for operating on buffers: signBuffer,
verifyBuffer, encryptBuffer, decryptBuffer, and CMSBufferParser. The signBuffer function
signs the contents of a buffer and returns the signature, which may or may not include a copy of
the buffer that was signed. The verifyBuffer function determines whether a message was
properly signed, and if so, may return a copy of the buffer that was signed along with singer's
identity and the time that the signature was generated. CMSBufferParser extracts the same
information from a signed message as verifyBuffer does, but CMSBufferParser does not attempt
to verify the signature. The encryptBuffer command encrypts the contents of a buffer in such a

 1

way that only the specified set of recipients can decrypt the message. These recipients may use
the decryptBuffer command to extract the original buffer contents.

The high-level PKI services API also defines five functions for operating on files: signFile,
verifyFile, encryptFile, decryptFile, and CMSFileParser. These functions are identical to the
corresponding buffer operations except that they take their input from files instead of buffers.
Depending on the function, the application may be able to specify whether the output is to be
placed in a file or in a buffer. Functions that do not provide this option always place the output in
a file.

This API was not designed to support the full range of applications and protocols that require
cryptographic support. The functions defined in this API are not appropriate for implementing
such low-level protocols as SSL/TLS and IPsec. The API was designed to present a simple
interface to application developers who need access to the basic cryptographic services of signing
and encrypting information. Most of the complexities of PKI are hidden beneath the level of the
API and must be addressed by the implementer of the PKI (i.e., the product API or the glue
layer).

It is, for example, the PKI's responsibility to maintain user login information, including the user's
identity. This information may either be stored in a PKI-specific configuration file or may be
requested from the user. Since the user's identity is not provided by the application to the glue
layer, it is assumed that each instantiation of the glue layer can only support a single user at a
time. The PKI may provide a single login capability that can be shared across multiple
applications. If the user is not logged in when a call to a function that requires user authentication
is made, the PKI will need to prompt the user to login. The PKI may provide a mechanism for
the user to log in and out of the PKI independent from the application. When an application calls
one of the functions that may require use of the user's private key, the API provides the
application with the capability to specify that user authentication is required. In this case, the PKI
must authenticate the user at the time of the function call even if the user was already logged in.

It is the responsibility of the application to allocate memory for all data that is output to buffers
by the API functions. In cases in which the maximum length of the output can be predicted, the
amount of memory that needs to be allocated by the application is specified in this document. For
example, in each function, if the function does not complete successfully, the PKI may output a
string that provides information about the nature of the error. This string may be up to 256 bytes
long (including the end-of-string character), so the application must allocate at least 256 bytes for
this parameter. In cases where the maximum length of the output cannot be predicted, the
application must specify the size of the buffer that it is providing and the PKI will specify the
actual length of the data. If the application does not provide a sufficiently large buffer, the PKI
will return the error code INSUFFICIENT_BUFFER_SIZE and will indicate the amount of buffer
space required, thus allowing the application to make a subsequent call in which sufficient
memory has been allocated.

The API makes use of a few data types throughout the specification. Parameters that specify
Boolean information use the C data type int, with the Boolean value TRUE being represented by
the integer 1 and FALSE by the integer 0. Times are encoded using the Distinguished Encoding
Rules (DER) [1] for the ASN.1 [2] type GeneralizedTime, with the restriction that fractional-
seconds must be omitted and the resulting string must be terminated by an end-of-string
character. That is, the time must be represented by the 15-byte string
"YYYYMMDDHHMMSSZ", in which the time is specified in Greenwich Mean Time.

 2

Applications must allocate at least 16 bytes for any output parameter that is to hold time
information.

Signing and Verifying

The output specified by this API for the signBuffer and signFile functions is based on the
SignedData type of RFC 2630 (Cryptographic Message Syntax) [3]. The SignedData type is
DER encoded. The data that was signed may be included within the DER encoded SignedData,
but this inclusion is optional. If the application chooses not to have the signed data encapsulated
within the signature, then it is the application's responsibility to maintain the association between
the signature and the signed data so that they may be presented together for signature verification.
Both opaque signing (inclusion of the signed data in the signature) and clear signing (exclusion of
the signed data from the signature) have merits for certain applications. It is the responsibility of
application designers to determine which option to choose for their particular application.

The SignerInfos field of the SignedData structure generated by signBuffer and signFile must
include exactly one SignerInfo. This field must include the signing-time attribute, specifying
the time at which the signer performed the signing process, as a signed attribute.

The SignedData structure can also, optionally, include certificates and CRLs that may be useful
in validating the signature. It is recommended that the SignedData structure include at least the
certificate that contains the public key corresponding to the private key used to generate the
signature. The PKI's implementations of verifyBuffer and verifyFile are responsible for obtaining
any certificates and CRLs not included in the signature that are needed for path building and
validation. A configuration file for the PKI may specify the location of a repository to facilitate
searches for needed certificates and CRLs.

In addition to providing the signature and signed data to the verifyBuffer and verifyFile functions,
the application must specify the level of assurance it requires from the signature. This assurance
level is specified as a non-negative integer, and it is assumed that a higher number indicates a
higher level of assurance. An application that is willing to accept any signature in which the
certificate corresponding to the public key used for verification passes certification path
validation may specify that it requires an assurance level of 0. Assurance levels higher than 0
indicate that more assurance is required. The specific meaning of each assurance level (e.g., 1, 2,
3) is PKI specific.

Typically, assurance levels will correspond to certificate policies. For example, a PKI may
specify three certificate policies, high-assurance, medium-assurance, and low-assurance, and
assign an object identifier (OID) to each policy. This policy OID will be inserted into any
certificate that meets the requirements of that policy. If the certification path validates under the
high-assurance policy, then the PKI will assert that the signature meets assurance level 3. If the
certification path validates under the medium-assurance policy, but not the high-assurance policy,
then signatures only meet assurance level 2. Signatures corresponding to certification paths that
only validate under the low-assurance policy meet assurance level 1. Signatures that correspond
to certification paths that validate, but not under any of the previously listed policies, are assigned
assurance level 0.

When the verifyBuffer or verifyFile function is called, the PKI must determine whether the
signature verifies, and if so, at what assurance level. If the assurance level is at least as high as
the minimum acceptable assurance level specified by the application, then the verification
function may succeed.

 3

The certificate path validation algorithm specified in X.509 [4] accepts several inputs in addition
to the list of certificates in the certification path. It is up to the PKI (i.e., the glue layer and/or the
product API) to specify the values for these inputs. The values to be used may be dependent on
the required level of assurance specified by the application.

Encryption and Decryption

The output specified by this API for the encryptBuffer and encryptFile functions is based on the
EnvelopedData type of RFC 2630. The type is DER encoded. While RFC 2630 allows the
encrypted data to be either included in or omitted from the encoding of EnvelopedData, this
specification requires that the encrypted data always be included.

A single call to encryptBuffer or encryptFile may result in the provided data being encrypted for
one or more recipients. If the data is to be encrypted for more than one recipient, then the output
should contain the DER encoding of a single EnvelopedData in which the recipientInfos field
consists of a set of one RecipientInfo for each intended recipient. The data must be encrypted in
such a way that it can only be decrypted by those recipients explicitly listed by the application. If
the application wishes for the data to be encrypted in such a way that the sender can decrypt the
data, the application must explicitly include the sender in the list of recipients. It is the
responsibility of the PKI (i.e., the glue layer and/or the product API) to obtain the necessary
keying material (e.g., certificates) for the recipients based on the information provided by the
application.

Implementation Guidance

Glue Layer Implementers

In order to simplify application development, much of the complexity involved in working with a
PKI is hidden underneath the level of the high-level PKI services API. It is the responsibility of
the glue layer (or the product API on which it is to be built) to locate certificates and CRLs, build
and validate certification paths, understand the meaning of assurance levels of signatures and
determine whether a given signature meets a given assurance level, maintain user identity and
authenticate users when necessary, and determine how to encrypt messages to a group of
recipients based on those recipients' identities.

In order to accomplish these tasks, the glue layer will need access to certain information that will
not be provided by the application. This information may be obtained either by obtaining it from
the user or by reading it in from a configuration file. Whenever possible, it is considered
preferable for the glue layer to obtain this information from configuration files. Information in a
configuration file can be generated once by a knowledgeable system administrator, thus saving
the application user from needing to know or understand this information. User authentication
information and other information that needs to be kept secret for security reasons should be
obtained directly from the user rather than storing it in a potentially insecure configuration file.

Examples of information that may be placed in a configuration file are:
• the location of a repository that contains certificates and CRLs;
• the default signature, encryption, and key management algorithms to use;
• the mappings between assurance levels and certificate policy OIDs;
• the input values to be used for path validation (e.g., whether policy mapping is inhibited); and

 4

• the location of a configuration file required by the implementation of the product API.

In addition to obtaining information from a configuration file, the glue layer may request
information directly from the user. For example, if the signBuffer function is called, and either
the user is not currently logged in or caller specifies that authentication must be performed, the
glue layer may present the user with an interactive dialog box requesting that user provide
authentication information. Similarly, when the encryptBuffer command is called, the glue layer
may request input from the user as necessary to locate the key management certificates of all of
the intended recipients.

The high-level PKI services API defines a fixed set of error codes that may be returned from any
of the functions defined in the API. Appendix A specifies the complete list of error codes and
each function specifies the set of error codes that may be returned by that function. A function
that completes successfully must return the code NO_ERR, whereas a function that does not
complete successfully must return one of the other error codes. If a function completes with a
warning from the underneath PKI services, a glue layer implementation can return
ERR_WARNING if it is deemed desirable for the glue layer to reflect this warning to the calling
application. In this case, all the output parameters of this function should be populated with data
as if the function had returned successfully. If a function fails as a result of a failed call to a
function in the underlying product API, the vendor-specific error code should be mapped to one
of the error codes defined in this API. If none of the specified error codes is appropriate for the
error that resulted in the failure, the generic ERR_OPERATION_FAILED error code may be
used. In any case, more specific information about the error may be provided in the output
parameter error_data. As the contents of the string in error_data does not need to be machine
readable, it may simply be copied from an error string provided by the underlying product API.
However, the glue layer must ensure that the string placed in error_data is at most 256 bytes
long, including the end-of-string character.

For output parameters in which the length of the output is variable in length, the glue layer must
ensure that no more data is written to the output parameter than the amount of space that the
application indicated was allocated for the buffer. If the application indicates that the no space
was allocated for the output buffer, then it is possible that the output parameter will have a value
of NULL. If the output parameter was not allocated enough space to hold the output value, the
glue layer must indicate to the application the amount of space that would be required to hold the
output value in addition to returning an error code of INSUFFICIENT_BUFFER_SIZE. Other
than error_data and the output length parameter in cases where a function fails due to
ERR_INSUFFICIENT_BUFFER_SIZE, the output parameters from a failed operation shall not
be populated with data and their contents should be ignored by the calling application.

Application Implementers

The high-level PKI services API was designed to hide most of the implementation complexities
from the application's developer. There are, however, a few issues that are left as a responsibility
for the application's programmer. For example, the application is responsible for allocating
memory for all output parameters. In some cases, the maximum length of an output parameter is
set by this specification. For example, the application needs to allocate at least 256 bytes for the
error_data parameter in each function call and 16 bytes for the time_data_signed parameter. In
cases where it was not possible to determine a maximum output length, this API requires that the
application indicate in the function call the amount of space that was allocated for a given output
parameter. On return, the function will indicate whether a sufficient amount of memory was
allocated, and if not, how much memory is needed.

 5

If an application is unable to guess the amount of space that needs to be allocated for an output
parameter, the application may adopt a strategy of calling the function twice. In the first call to
the function, no memory is allocated. Then the amount of memory that is specified as required
can be allocated and then the function can be called a second time with that amount of memory.
This will simplify the implementation of the application. However, depending on the
implementation of the glue layer this may be expensive. The cost, in time, of calling a function to
determine the amount of space required for the output parameter may be the same as the amount
of time required to perform the requested operation. Thus, this strategy may double the amount
of time required to perform an operation, even in cases where the operation is relatively time
consuming.

 6

High Level PKI Services API

int signBuffer(

IN uint32 data_length,
IN char* data_to_sign,
IN int authent_required,
IN int encap_data_flag,
IN/OUT uint32* signed_data_length,
IN/OUT uchar* signed_data,
OUT char* error_data

);

This function will cause the underlying components to
• Reauthenticate the user to the PKI if the authent_required flag is set to TRUE.
• Locate the signer’s key and generate the digital signature over the data to be signed.
• DER-encode the generated signature and other relevant information (such as signerInfo) in

the SignedData type of the Cryptographic Message Syntax (CMS) defined in the RFC2630.
• Return error code or success to the application.

Parameters

data_length: the length of data_to_sign.
data_to_sign: the buffer for the data to be signed.
authent_required: Specifies TRUE or FALSE to indicate whether a user should be reauthenticated

to the PKI before a digital signature can be generated.
encap_data_flag: Specifies TRUE or FALSE to indicate whether the signed content should be

included in EncapsulatedContentInfo.
signed_data_length: A pointer to the size of the signed_data buffer. As input to the API, it points

to the memory size allocated for signed_data. As output, it points to the actual length of
signed_data.

signed_data: the buffer to hold the signature octet string that corresponds to the SignedData type
of RFC2630.

error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ INSUFFICIENT_BUFFER_SIZE

The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

 7

ERR_CERT_NOT_FOUND
The signer’s signing certificate or key could not be found. The output parameter
error_data may contain the Distinguished Name (DN) of the certificate owner.

ERR_CERT_EXPIRED
The signer’s certificate has expired. The output parameter error_data may contain the
DN of the certificate owner.

ERR_CERT_INVALID

The signer’s certificate is not valid for reasons not covered by any other code in
Appendix A. This can be returned when an implementation actually checks the validity of
the signer’s certificate before a signature is generated. The output parameter error_data
may contain the DN of the certificate owner.

ERR_CRL_NOT_FOUND

A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

ERR_CRL_SIGNATURE_FAILURE

The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED
The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION
The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE

The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

ERR_RR_SUPERSEDED
The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

ERR_RR_UNSPECIFIED
The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_OTHER
The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED

 8

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 9

int signFile(
IN char* infile,
IN int authent_required,
IN int encap_data_flag,
IN int output_to_file,
IN char* outfile,
IN/OUT uint32* signed_data_length,
IN/OUT uchar* signed_data,
OUT char* error_data

);

This function will cause the underlying components to
• Reauthenticate the user to the PKI if the authent_required flag is set to TRUE.
• Open and read the file to be signed; return error if it cannot be opened or read.
• Locate the signer’s key and generate a digital signature over the file to be signed.
• DER-encode the signature and other relevant information (such as signerInfo) in the

SignedData type. Write the signature output to the signed_data buffer or to the outfile file,
depending on the choice specified in output_to_file.

• Return error code or success to the application.

Parameters

infile: the name of the file to be signed.
authent_required: Specifies TRUE or FALSE to indicate whether a user should be reauthenticated

to the PKI before a digital signature can be generated.
encap_data_flag: Specifies TRUE or FALSE to indicate whether the file to be signed should be

included in EncapsulatedContentInfo of SignedData. The default is FALSE. It is
generally undesirable to include the signed file, unless small in size, in
EncapsulatedContentInfo.

output_to_file: Specifies TRUE or FALSE to indicate whether the signature output should be sent
to a file or a buffer. If the output is sent to a buffer, signed_data_length and signed_data
shall be used; and verifyBuffer rather than verifyFile should be called to verify the
signature contained in the buffer. If the signature output is to be written to outfile, then
verifyFile should be called later on for signature verification.

outfile: the name of the file to receive the signature output.
signed_data_length: A pointer to the size of the signed_data buffer. As input to the API, it points

to the memory size allocated for signed_data. As output, it points to the actual length of
signed_data. Signed_data_length and signed_data shall be used only when output_to_file
is FALSE.

signed_data: the buffer to hold the signature octet string that corresponds to the SignedData type
of RFC2630. Signed_data_length and signed_data shall be used only when
output_to_file is FALSE.

error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING

 10

 Function completed with a warning.

ERR_FILE_OPERATION

An error occurred in a file operation. The output parameter error_data may contain the
name of the file in error.

ERR_ INSUFFICIENT_BUFFER_SIZE

The allocated memory is not sufficient for an output parameter. The output parameter
error_data may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER
An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

ERR_CERT_NOT_FOUND

The signer’s signing certificate or key could not be found. The output parameter
error_data may contain the DN of the certificate owner.

ERR_CERT_EXPIRED

The signer’s certificate has expired. The output parameter error_data may contain the
DN of the certificate owner.

ERR_CERT_INVALID

The signer’s certificate is not valid for reasons not covered by any other code in
Appendix A. This can be returned when an implementation actually checks the validity of
the signer’s certificate before a signature is generated. The output parameter error_data
may contain the DN of the certificate owner.

ERR_CRL_NOT_FOUND

A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

ERR_CRL_SIGNATURE_FAILURE
The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED

The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION
The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE

The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

 11

ERR_RR_SUPERSEDED

The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

ERR_RR_UNSPECIFIED
The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_OTHER
The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 12

int verifyBuffer(
IN uint32 signed_data_length,
IN uchar* signed_data,
IN ushort policy,
OUT char* signer,
OUT char* time_data_signed,
IN/OUT uint32* data_verified_length,
IN/OUT char* data_verified,
OUT char* error_data

);

This function is used to verify the signature contained in the signed_data buffer. Upon a
successful verification, the signer identity, timestamp, and the original signed content are
returned.

Parameters

signed_data_length: the length of signed_data.
signed_data: the buffer that holds the signature octet string that corresponds to the SignedData

type of RFC2630.
policy: the required policy or assurance level under which the verification certificate must be

issued. Applications that do not require policy checking can set this to zero as input.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time in the GeneralizedTime format.
data_verified_length: Specifies the length of data_verified, which is also the data signed.

Depending on whether the signed content was included in EncapsulatedContentInfo, this
parameter has different settings as input to the API. If the signed content was included in
EncapsulatedContentInfo, this parameter, as input to the API, points to the memory size
allocated for data_verified. As output, it points to the actual length of data_verified.
However, if the original signed content was not included in EncapsulatedContentInfo,
then it should be specified through data_verified and data_verified_length for signature
verification. In this case, as input and output to the API, this parameter always points to
the length of the signed content held in the data_verified buffer.

data_verified: the buffer to hold or holding the signed content depending on whether the content
was included in EncapsulatedContentInfo. If the signed content was included in
EncapsulatedContentInfo, this parameter, as input to the API, specifies an empty buffer.
As output, it holds the signed content whose signature is just verified. On the other hand,
if the signed content was not included in EncapsulatedContentInfo, this parameter, as
input and output to the API, buffers the data that was signed.

error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ASN1_PARSE_FAILURE

The ASN.1 object specified by signed_data cannot be decoded.

 13

ERR_ INSUFFICIENT_BUFFER_SIZE

The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

ERR_UNSUPPORTED_ALGORITHM

The requested algorithm is not supported. The output parameter error_data may contain
the algorithm identifier.

ERR_CERT_NOT_FOUND

The signer’s certificate could not be found. The output parameter error_data may contain
the DN of the certificate owner.

ERR_CERT_EXPIRED
The signer’s certificate has expired. The output parameter error_data may contain the
DN of the certificate owner.

ERR_CERT_PATH_ERROR
A complete certification path could not be built or validated. The output parameter
error_data may contain the DN of the certificate owner.

ERR_CERT_EXT_UNKNOWN_CRITICAL
This certificate contains an unrecognized extension that is marked critical. The output
parameter error_data may contain the DN of the certificate owner.

ERR_CERT_ASSURANCE_LEVEL_NOT_MET

The signer’s certificate policy does not meet the required assurance level. The output
parameter error_data may contain the DN of the certificate owner.

ERR_CERT_INVALID
The signer’s certificate is not valid for reasons not covered by any other code in
Appendix A. The output parameter error_data may contain the DN of the certificate
owner.

ERR_CRL_NOT_FOUND
A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

ERR_CRL_SIGNATURE_FAILURE

The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED

 14

The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION
The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE

The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

ERR_RR_SUPERSEDED

The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

ERR_RR_UNSPECIFIED

The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_OTHER

The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 15

int verifyFile(
IN/OUT char* file_signed,
IN char* signature_file,
IN ushort policy,
OUT char* signer,
OUT char* time_data_signed,
OUT char* error_data

);

This function is used to verify a digital signature contained in the signature_file. Upon a
successful verification, the signer identity, timestamp, and the original signed content are
returned.

Parameters

file_signed: names the file to receive or holding the signed data depending on whether the

original signed content was included in EncapsulatedContentInfo. If the signed file
content was included in EncapsulatedContentInfo, this parameter should specify a file
name to receive the content signed upon a successful verification. If the file content was
not included in EncapsulatedContentInfo, this parameter, as input and output to the API,
names the file that was signed.

signature_file: names the file that contains the signature octet string.
policy: the required policy or assurance level under which the verification certificate must be

issued. Applications that do not require policy checking can set this to zero as input.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time in the GeneralizedTime format.
error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ASN1_PARSE_FAILURE

The ASN.1 object contained in the signature file cannot be decoded.

ERR_FILE_OPERATION
An error occurred in a file operation. The output parameter error_data may contain the
name of the file in error.

ERR_ INSUFFICIENT_BUFFER_SIZE

The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

 16

ERR_UNSUPPORTED_ALGORITHM
The requested algorithm is not supported. The output parameter error_data may contain
the algorithm identifier.

ERR_CERT_NOT_FOUND

The signer’s certificate could not be found. The output parameter error_data may contain
the DN of the certificate owner.

ERR_CERT_EXPIRED

The signer’s certificate has expired. The output parameter error_data may contain the
DN of the certificate owner.

ERR_CERT_PATH_ERROR
A complete certification path could not be built or validated. The output parameter
error_data may contain the DN of the certificate owner.

ERR_CERT_EXT_UNKNOWN_CRITICAL
This certificate contains an unrecognized extension that is marked critical. The output
parameter error_data may contain the DN of the certificate owner.

ERR_CERT_ASSURANCE_LEVEL_NOT_MET

The signer’s certificate policy does not meet the required assurance level. The output
parameter error_data may contain the DN of the certificate owner.

ERR_CERT_INVALID

The signer’s certificate is not valid for reasons not covered by any other code in
Appendix A. The output parameter error_data may contain the DN of the certificate
owner.

ERR_CRL_NOT_FOUND
A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

ERR_CRL_SIGNATURE_FAILURE

The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED

The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION

The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE

 17

The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

ERR_RR_SUPERSEDED

The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

ERR_RR_UNSPECIFIED

The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_OTHER

The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 18

int encryptBuffer(
IN char** recipientlist,
IN uint32 data_length,
IN char* data_to_encrypt,
IN ushort encryption_algorithm,
IN int authent_required,
IN/OUT uint32* enveloped_data_length,
IN/OUT uchar* enveloped_data,
OUT char* error_data

);

This function will cause the underlying components to
• Locate each recipient’s encryption certificate or key agreement public key certificate

depending on the choice of key management techniques. Check the validity of the recipient’s
certificate. Locate the sender’s private key if key agreement is selected.

• Generate a random session or one-time symmetric key. If key transport is the choice for
deriving the same encrypting key between the sender and the recipient, then the session or
one-time key should be encrypted under the recipient’s public encryption key. If key
agreement is the choice, then the sender’s private key and the recipient’s key agreement
public key are used to generate a pair wise symmetric key, which is then used to encrypt the
session or one-time key. If the key management choice is neither key transport nor key
agreement, but rather to use a previously distributed symmetric key encryption key, then the
session or one-time key should be encrypted under this key encryption key. In order for this
key management scheme to work, the sender must have a previously distributed key
encryption key with each recipient that the sender may communicate with. Since this key
management scheme does not scale well to a large user community, we recommend that only
key transport or key agreement be used.

• Encrypt the data buffer under the session or one-time key using the encryption algorithm
specified in encrytion_algorithm.

• DER-encode the recipient-specific information and cipher text in the envelopedData type of
RFC2630. Note that the application will send the same DER-encoded envelopedData to all
the recipients. It is the responsibility of each recipient’s PKI to decode the envelopedData and
parse the recipient-specific information in order to derive the encryption key that is to decrypt
the cipher text.

Parameters

recipientlist: the list of recipients for the encrypted information.
data_length: the length of the data_to_encrypt buffer.
data_to_encrypt: the data buffer to be encrypted.
encryption_algorithm: the encryption algorithm to be used.
authent_required: Relevant only if key agreement is used during the encryption process, this flag

specifies TRUE or FALSE to indicate whether the user needs to be reauthenticated to the
PKI before the private key can be used to perform key agreement. If key agreement is not
used, this flag should be set to FALSE.

enveloped_data_length: A pointer to the size of the enveloped_data buffer. As input to the API, it
points to the memory size allocated for enveloped_data. As output, it points to the actual
size of enveloped_data.

enveloped_data: the buffer to hold the encrypted octet string that corresponds to the
EnvelopedData type of RFC2630.

 19

error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ INSUFFICIENT_BUFFER_SIZE

The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

ERR_UNSUPPORTED_ALGORITHM

The requested algorithm is not supported. The output parameter error_data may contain
the algorithm identifier.

ERR_CERT_NOT_FOUND

A recipient’s encryption certificate could not be found. The output parameter error_data
may contain the DN of the recipient.

ERR_CERT_EXPIRED
A recipient’s encryption certificate has expired. The output parameter error_data may
contain the DN of the certificate owner.

ERR_CERT_PATH_ERROR

A complete certification path could not be built or validated. The output parameter
error_data may contain the DN of the certificate owner.

ERR_CERT_EXT_UNKNOWN_CRITICAL
This certificate contains an unrecognized extension that is marked critical. The output
parameter error_data may contain the DN of the certificate owner.

ERR_CERT_INVALID

A recipient’s certificate is not valid for reasons not covered by any other code in
Appendix A. The output parameter error_data may contain the DN of the certificate
owner.

ERR_CRL_NOT_FOUND
A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

 20

ERR_CRL_SIGNATURE_FAILURE
The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED

The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION

The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE

The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

ERR_RR_SUPERSEDED
The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

ERR_RR_UNSPECIFIED

The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_OTHER

The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 21

int encryptFile(
IN char** recipientlist,
IN char* file_to_encrypt,
IN ushort encryption_algorithm,
IN int authent_required,
IN int output_to_file,
IN char* encrypted_file,
IN/OUT uint32* enveloped_data_length,
IN/OUT uchar* enveloped_data,
OUT char* error_data

);

This function will cause the underlying components to
• Open the specific files for reading/writing. Return error code if it encounters a problem.
• Locate each recipient’s encryption certificate or key agreement public key certificate

depending on the choice of key management techniques. Check the validity of the recipient’s
certificate. Locate the sender’s private key if key agreement is selected; the sender may need
to be reauthenticated if authent_required is set to TRUE.

• Generate a random session or one-time symmetric key. If key transport is the choice for
deriving the same encrypting key between the sender and the recipient, then the session or
one-time key should be encrypted under the recipient’s public encryption key. If key
agreement is the choice, then the sender’s private key and the recipient’s key agreement
public key are used to generate a pair wise symmetric key, which is then used to encrypt the
session or one-time key. If the key management choice is neither key transport nor key
agreement, but rather to use a previously distributed symmetric key encryption key, then the
session or one-time key should be encrypted under this key encryption key. In order for this
key management scheme to work, the sender must have a previously distributed key
encryption key with each recipient that the sender may communicate with. Since this key
management scheme does not scale well to a large user community, we recommend that only
key transport or key agreement be used.

• Read the file content into a data buffer; encrypt the buffer under the session or one-time key
using the specified encryption algorithm.

• DER-encode the recipient-specific information and cipher text in the envelopedData type of
RFC2630. Depending on the choice specified in output_to_file, the encrypted output should
be written to a buffer, enveloped_data, or to a file named by encrypted_file. Note that the
application will send the same encrypted file or buffer to all the recipients. It is the
responsibility of each recipient’s PKI to read the file or buffer, decode the envelopedData,
and parse the recipient-specific information in order to derive the encryption key that is to
decrypt the cipher text.

Parameters

recipientlist: the list of recipients for the encrypted information.
file_to_encrypt: the name of the file to be encrypted.
encryption_algorithm: the encryption algorithm to be used.
authent_required: Relevant only if key agreement is used during the encryption process, this flag

specifies TRUE or FALSE to indicate whether the user needs to be reauthenticated to the
PKI before the private key can be used to perform key agreement. If key agreement is not
used, this flag should be set to FALSE.

 22

output_to_file: Specifies TRUE or FALSE to indicate whether the encrypted output should be
sent to a file or a buffer. If the output is sent to a buffer, enveloped_data_length and
enveloped_data shall be used; and decryptBuffer rather than decryptFile should be called
to decrypt the encrypted buffer. If the output is sent to the encrypted_file file, then
decryptFile should be called to decrypt the encrypted file.

encrypted_file: names the file to receive the encrypted output.
enveloped_data_length: A pointer to the size of the enveloped_data buffer. As input to the API, it

points to the memory size allocated for enveloped_data. As output, it points to the actual
length of enveloped_data. This parameter and enveloped_data shall be used only when
output_to_file is set to FALSE.

enveloped_data: the buffer to hold the encrypted octet string that corresponds to the
EnvelopedData type of RFC2630. This parameter and enveloped_data_length shall be
used only when output_to_file is set to FALSE.

error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_FILE_OPERATION

An error occurred in a file operation. The output parameter error_data may contain the
name of the file in error.

ERR_ INSUFFICIENT_BUFFER_SIZE
The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

ERR_UNSUPPORTED_ALGORITHM
The requested algorithm is not supported. The output parameter error_data may contain
the algorithm identifier.

ERR_CERT_NOT_FOUND

A recipient’s encryption certificate could not be found. The output parameter error_data
may contain the DN of the recipient.

ERR_CERT_EXPIRED

A recipient’s encryption certificate has expired. The output parameter error_data may
contain the DN of the certificate owner.

ERR_CERT_PATH_ERROR

A complete certification path could not be built or validated. The output parameter
error_data may contain the DN of the certificate owner.

 23

ERR_CERT_EXT_UNKNOWN_CRITICAL
A recipient’s encryption certificate contains an unrecognized extension that is marked
critical. The output parameter error_data may contain the DN of the certificate owner.

ERR_CERT_INVALID

A recipient’s certificate is not valid for reasons not covered by any other code in
Appendix A. The output parameter error_data may contain the DN of the certificate
owner.

ERR_CRL_NOT_FOUND

A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

ERR_CRL_SIGNATURE_FAILURE

The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED

The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION
The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE
The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

ERR_RR_SUPERSEDED

The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

ERR_RR_UNSPECIFIED

The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_OTHER

The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED
The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 24

int decryptBuffer(
IN uint32 enveloped_data_length,
IN uchar* enveloped_data,
IN int authent_required,
IN/OUT uint32* plain_text_length,
IN/OUT char* plain_text,
OUT ushort* encryption_algorithm,
OUT char* error_data

);

This function is used to decrypt an encrypted enveloped_data buffer. Upon successful decryption,
the plain text and the encryption algorithm used are returned.

Parameters

enveloped_data_length: the length of the enveloped_data buffer.
enveloped_data: the buffer that holds the encrypted octet string that corresponds to the

EnvelopedData type of RFC2630.
authent_required: Relevant only if key transport or key agreement is used during the encryption

process, this flag specifies TRUE or FALSE to indicate whether the user needs to be
reauthenticated to the PKI before his private key can be used to perform key transport or
key agreement. If key transport or key agreement is not used, this flag should be set to
FALSE.

plain_text_length: a pointer to the size of the plain_text buffer. As input to the API, it points to
the memory size allocated for plain_text. As output, it points to the actual length of
plain_text.

plain_text: the buffer to receive the decrypted text.
encryption_algorithm: a pointer to the encryption algorithm used.
error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ASN1_PARSE_FAILURE

The ASN.1 object specified by enveloped_data cannot be decoded.

ERR_ INSUFFICIENT_BUFFER_SIZE

The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER
An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

ERR_UNSUPPORTED_ALGORITHM

 25

The requested algorithm is not supported. The output parameter error_data may contain
the algorithm identifier.

ERR_CERT_NOT_FOUND

The decryptor’s encryption certificate or key could not be found. The output parameter
error_data may contain the DN of the key owner.

ERR_CERT_EXPIRED

The decryptor’s encryption certificate has expired. The output parameter error_data may
contain the DN of the certificate owner.

ERR_CERT_PATH_ERROR

A complete certification path could not be built or validated. The output parameter
error_data may contain the DN of the certificate owner.

ERR_CERT_EXT_UNKNOWN_CRITICAL
The decryptor’s encryption certificate contains an unrecognized extension that is marked
critical. The output parameter error_data may contain the DN of the certificate owner.

ERR_CERT_INVALID

The decryptor’s encryption certificate is not valid for reasons not covered by any other
code in Appendix A. The output parameter error_data may contain the DN of the
certificate owner.

ERR_CRL_NOT_FOUND

A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

ERR_CRL_SIGNATURE_FAILURE

The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED

The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION

The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE

The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

ERR_RR_SUPERSEDED

The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

 26

ERR_RR_UNSPECIFIED

The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_OTHER

The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 27

int decryptFile(
IN char* encrypted_file,
IN int authent_required,
IN char* plain_text_file,
OUT ushort* encryption_algorithm,
OUT char* error_data

);

This function is used to decrypt an encrypted file. Upon successful decryption, the plain text and
the encryption algorithm used are returned.

Parameters

encrypted_file: the name of the file that contains the encrypted octet string.
authent_required: Relevant only if key transport or key agreement is used during the encryption

process, this flag specifies TRUE or FALSE to indicate whether the user needs to be
reauthenticated to the PKI before his private key can be used to perform key transport or
key agreement. If key transport or key agreement is not used, this flag should be set to
FALSE.

plain_text_file: the name of the file that is to receive the decrypted text.
encryption _algorithm: a pointer to the encryption algorithm used.
error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ASN1_PARSE_FAILURE

The ASN.1 object contained in the encrypted_file cannot be decoded.

ERR_FILE_OPERATION
An error occurred in a file operation. The output parameter error_data may contain the
name of the file in error.

ERR_ INSUFFICIENT_BUFFER_SIZE
The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

ERR_UNSUPPORTED_ALGORITHM

The requested algorithm is not supported. The output parameter error_data may contain
the algorithm identifier.

ERR_CERT_NOT_FOUND

 28

The decryptor’s encryption certificate or key could not be found. The output parameter
error_data may contain the DN of the key owner.

ERR_CERT_EXPIRED

The decryptor’s encryption certificate has expired. The output parameter error_data may
contain the DN of the certificate owner.

ERR_CERT_PATH_ERROR

A complete certification path could not be built or validated. The output parameter
error_data may contain the DN of the certificate owner.

ERR_CERT_EXT_UNKNOWN_CRITICAL
The decryptor’s encryption certificate contains an unrecognized extension that is marked
critical. The output parameter error_data may contain the DN of the certificate owner.

ERR_CERT_INVALID

The decryptor’s encryption certificate is not valid for reasons not covered by any other
code in Appendix A. The output parameter error_data may contain the DN of the
certificate owner.

ERR_CRL_NOT_FOUND

A CRL from this issuer could not be found. The output parameter error_data may
contain the DN of the CRL issuer.

ERR_CRL_EXT_UNKNOWN_CRITICAL

The CRL from this issuer contains an unrecognized extension that is marked critical. The
output parameter error_data may contain the DN of the CRL issuer.

ERR_CRL_SIGNATURE_FAILURE

The signature on the CRL failed to verify. The output parameter error_data may contain
the DN of the CRL issuer.

ERR_RR_AFFILIATION_CHANGED

The certificate has been revoked due to affiliation changes. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_CESSATION_OF_OPERATION

The certificate has been revoked due to a cessation of operation. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_RR_KEY_COMPROMISE

The certificate has been revoked because the key has been compromised. The output
parameter error_data may contain the DN of the revoked certificate.

ERR_RR_SUPERSEDED

The certificate has been superseded. The output parameter error_data may contain the
DN of the revoked certificate.

ERR_RR_UNSPECIFIED

The certificate has been revoked for unspecified reasons. The output parameter
error_data may contain the DN of the revoked certificate.

 29

ERR_RR_OTHER

The certificate has been revoked for other reason not listed above. The output parameter
error_data may contain the DN of the revoked certificate.

ERR_OPERATION_FAILED

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 30

int CMSBufferParser (
IN uint32 signed_data_length,
IN uchar* signed_data,
OUT char* signer,
OUT char* time_data_signed,
IN/OUT uint32* content_length,
IN/OUT char* content_signed,
OUT char* error_data

);

* Note this is a non-cryptographic function call. It allows an application that is unaware of the
complex CMS structure to be able to obtain information about the signer without having to verify
the signature. The idea came from the S/MIME (Secure/Multipurpose Internet Mail Extensions)
client implementation where one may receive a signed message but does not feel the need to
verify the signature, and yet wants to know what was signed and who signed it. Note that if the
content that was signed had not been included in the EncapsulatedContentInfo of SignedData,
then the output content_length should return zero and content_signed shall be an empty string.

Parameters

signed_data_length: the length of the signed_data buffer.
signed_data: the buffer that holds the signature octet string that corresponds to the SignedData

type of RFC2630.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time in the GeneralizedTime format.
content_length: a pointer to the size of content_signed. As input to the API, it points to the

memory size allocated for content_signed. As output, it points to the actual length of
content_signed.

content_signed: the buffer to receive the original signed content. If that content was not included
in EncapsulatedContentInfo, then content_signed should be an empty string.

error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ASN1_PARSE_FAILURE

The ASN.1 object specified by signed_data cannot be decoded.

ERR_ INSUFFICIENT_BUFFER_SIZE
The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

 31

ERR_OPERATION_FAILED
The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 32

int CMSFileParser (
IN char* signature_file,
IN/OUT char* file_signed,
OUT char* signer,
OUT char* time_data_signed,
OUT char* error_data

);

• Note this is a non-cryptographic function call. It allows an application that is unaware of

the complex CMS structure to be able to obtain information about the signer without having
to verify the signature. The idea came from the S/MIME client implementation where one
may receive a signed message but does not feel the need to verify the signature, and yet wants
to know what was signed and who signed it. In the case of a signed file, the file content by
default will not be included in the EncapsulatedContentInfo, therefore, the signed content will
not be written to file_signed. However, if the signed content was included in
EncapsulatedContentInfo, the signed content will be written to the file_signed file.

Parameters

signature_file: the name of the signature file.
file_signed: the name of the file to receive the original signed content.
signer: the buffer to receive the signer identity.
time_data_signed: the buffer to receive the signing date and time in the GeneralizedTime format.
error_data: the buffer to hold pertinent information about the error condition.

Return values

NO_ERR
 Function completed successfully.

ERR_WARNING
 Function completed with a warning.

ERR_ASN1_PARSE_FAILURE

The ASN.1 object contained in the signature file cannot be decoded.

ERR_FILE_OPERATION
An error occurred in a file operation. The output parameter error_data may contain the
name of the file in error.

ERR_ INSUFFICIENT_BUFFER_SIZE
The allocated memory is not sufficient for a parameter. The output parameter error_data
may contain the name of the parameter in error.

ERR_ INVALID_PARAMETER

An invalid parameter was passed to this function. The output parameter error_data may
contain the name of the parameter in error.

ERR_OPERATION_FAILED

The requested service failed or resource was unavailable. The output parameter
error_data should contain a specific error description.

 33

References

[1] ITU-T Recommendation X.690: Information technology – ASN.1 encoding rules:

Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER). December 1997.

[2] ITU-T Recommendation X.680: Information technology - Abstract Syntax Notation One

(ASN.1): Specification of basic notation. December 1997.

[3] Housley, R. Cryptographic Message Syntax. RFC2630. June 1999.

[4] ITU-T Recommendation X.509: Information technology - Open Systems Interconnection

- The Directory: Public-key and attribute certificate frameworks. March 2000.

 34

APPENDIX A – RETURN CODES

Value Error Code Meaning If present, data is
0 NO_ERR Function completed successfully

100 ERR_WARNING Function completed with a warning, but not a fatal error Warning description
101 ERR_ASN1_PARSE_FAILURE Could not parse an ASN.1 object
102 ERR_FILE_OPERATION Error occurred in a file operation Filename
103 ERR_INSUFFICIENT_BUFFER_SIZE Allocated memory is not sufficient for a parameter Parameter in error
104 ERR_INVALID_PARAMETER An invalid parameter was passed to this function Parameter in error
105 ERR_UNSUPPORTED_ALGORITHM The requested algorithm is not supported Algorithm ID
106 ERR_CERT_NOT_FOUND The required certificate or key could not be found DN of key owner
107 ERR_CERT_EXPIRED The certificate has expired DN of certificate
108 ERR_CERT_PATH_ERROR No valid path can be found to validate a certificate DN of certificate
109 ERR_CERT_EXT_UNKNOWN_CRITICAL The certificate contains an unknown extension marked critical DN of certificate
110 ERR_CERT_ASSURANCE_LEVEL_NOT_MET Certificate policy does not meet the required assurance level DN of certificate
111 ERR_CERT_INVALID The certificate is invalid for unspecified reasons DN of certificate
112 ERR_CRL_NOT_FOUND The required CRL could not be found DN of CRL issuer
113 ERR_CRL_EXT_UNKNOWN_CRITICAL The CRL contains an unknown extension marked critical DN of CRL issuer
114 ERR_CRL_SIGNATURE_FAILURE The signature on the CRL could not be verified DN of CRL issuer
115 ERR_RR_AFFILIATION_CHANGED The certificate has been revoked due to affiliation changes DN of revoked certificate
116 ERR_RR_CESSATION_OF_OPERATION The certificate has been revoked due to a cessation of operation DN of revoked certificate
117 ERR_RR_KEY_COMPROMISE The certificate has been revoked due to key compromise DN of revoked certificate
118 ERR_RR_SUPERSEDED The certificate has been revoked for being superseded DN of revoked certificate
119 ERR_RR_UNSPECIFIED The certificate has been revoked for an unspecified reason DN of revoked certificate
120 ERR_RR_OTHER The certificate has been revoked for other reason not listed above DN of revoked certificate
121

ERR_OPERATION_FAILED General failure, requested service failed or resource unavailable
Error description received from
underneath PKI service calls

 35

	Introduction
	
	Figure 1. High-Level PKI Services API

	Overview
	Signing and Verifying
	Encryption and Decryption

	Implementation Guidance
	Glue Layer Implementers
	Application Implementers

	IN/OUTuint32*signed_data_length,
	IN/OUTuchar*signed_data,
	OUTchar*error_data
	Parameters
	INchar*outfile,
	IN/OUTuint32*signed_data_length,
	IN/OUTuchar*signed_data,
	OUTchar*error_data
	OUTchar*error_data
	OUTchar*error_data
	OUTchar*error_data
	Parameters
	OUTchar*error_data
	Parameters
	OUTchar*error_data
	Parameters
	OUTchar*error_data
	int CMSBufferParser (
	IN/OUTchar*content_signed,

	OUTchar*error_data
	OUTchar*error_data
	
	
	APPENDIX A – RETURN CODES
	Value
	Error Code
	Meaning
	If present, data is
	0
	NO_ERR
	Function completed successfully
	100
	ERR_WARNING
	Function completed with a warning, but not a fatal error
	Warning description
	101
	ERR_ASN1_PARSE_FAILURE
	Could not parse an ASN.1 object
	102
	ERR_FILE_OPERATION
	Error occurred in a file operation
	Filename
	103
	ERR_INSUFFICIENT_BUFFER_SIZE
	Allocated memory is not sufficient for a parameter
	Parameter in error
	104
	ERR_INVALID_PARAMETER
	An invalid parameter was passed to this function
	Parameter in error
	105
	ERR_UNSUPPORTED_ALGORITHM
	The requested algorithm is not supported
	Algorithm ID
	106
	ERR_CERT_NOT_FOUND
	The required certificate or key could not be found
	DN of key owner
	107
	ERR_CERT_EXPIRED
	The certificate has expired
	DN of certificate
	108
	ERR_CERT_PATH_ERROR
	No valid path can be found to validate a certificate
	DN of certificate
	109
	ERR_CERT_EXT_UNKNOWN_CRITICAL
	The certificate contains an unknown extension marked critical
	DN of certificate
	110
	ERR_CERT_ASSURANCE_LEVEL_NOT_MET
	Certificate policy does not meet the required assurance level
	DN of certificate
	111
	ERR_CERT_INVALID
	The certificate is invalid for unspecified reasons
	DN of certificate
	112
	ERR_CRL_NOT_FOUND
	The required CRL could not be found
	DN of CRL issuer
	113
	ERR_CRL_EXT_UNKNOWN_CRITICAL
	The CRL contains an unknown extension marked critical
	DN of CRL issuer
	114
	ERR_CRL_SIGNATURE_FAILURE
	The signature on the CRL could not be verified
	DN of CRL issuer
	115
	ERR_RR_AFFILIATION_CHANGED
	The certificate has been revoked due to affiliation changes
	DN of revoked certificate
	116
	ERR_RR_CESSATION_OF_OPERATION
	The certificate has been revoked due to a cessation of operation
	DN of revoked certificate
	117
	ERR_RR_KEY_COMPROMISE
	The certificate has been revoked due to key compromise
	DN of revoked certificate
	118
	ERR_RR_SUPERSEDED
	The certificate has been revoked for being superseded
	DN of revoked certificate
	119
	ERR_RR_UNSPECIFIED
	The certificate has been revoked for an unspecified reason
	DN of revoked certificate
	120
	ERR_RR_OTHER
	The certificate has been revoked for other reason not listed above
	DN of revoked certificate
	121
	ERR_OPERATION_FAILED
	General failure, requested service failed or resource unavailable
	Error description received from underneath PKI service calls

